0 MongoDB

HANDBOOK

HHHHHHHHHHHHH

MongoDB Handbook

1. Introduction

In this MongoDB handbook, we'll cover everything you need to use MongoDB
confidently as fast as possible. We'll use an e-commerce website as our primary
example with three main collections:

 products : store products information
* orders : store order details

 contacts : messages from the contact form

You'll learn all essential MongoDB operations using the latest MongoDB features.

2. MongoDB Basics

What is MongoDB?

MongoDB is a NoSQL document-oriented database. It stores data in JSON-like
documents (actually BSON, a binary form of JSON).

Key Components

« mongod — the main MongoDB server daemon. It handles connections,

database storage, and queries. You must run this before using MongoDB
locally.

« mongosh —the MongoDB Shell. It's the command-line interface for

interacting with MongoDB. You use it to run commands, queries, and scripts.

* MongoDB Compass — a GUI tool for visualizing data, running queries, and
analyzing performance. Perfect for beginners who prefer a graphical view.

3. Installing MongoDB

Installing MongoDB can be easily done by visiting the official website. The
community edition is free and suitable for most use cases.

4. Basic Mongo Shell Commands

show dbs // List all databases

use ecommerce // Create or switch to a database

show collections // List all collections in the current DB
db.dropDatabase() // Drop current database

5. Creating Collections and Inserting Data

We'll create three collections:

* products
* orders

¢ contacts

Insert Sample Products

Let's populate our database using insertMany() .

use ecommerce

db.products.insertMany(|
{
name: "Wireless Mouse",
price: 799,

category: "Electronics"”,

stock: 120,
ratings: 4.5,
tags: ["computer", "accessory", "wireless"],
createdAt: new Date()
s
{

name: "Mechanical Keyboard",
price: 2499,
category: "Electronics”,
stock: 890,
ratings: 4.8,
tags: ["keyboard", "mechanical"],
createdAt: new Date()

s

{
name: "Gaming Laptop",
price: 85999,
category: "Computers",
stock: 30,
ratings: 4.6,
tags: ["gaming", "laptop"],

createdAt: new Date()

Insert Orders

db.orders.insertMany ([
{
orderId: "ORDOO1",
user: "John Doe",
products: [
{ name: "Wireless Mouse", quantity: 1, price: 799 },
{ name: "Mechanical Keyboard", quantity: 1, price: 2499 }
1
total: 3298,
status: "Delivered",
createdAt: new Date()
s

orderId: "ORD0O2",
user: "Jane Smith",
products: [
{ name: "Gaming Laptop", quantity: 1, price: 85999 }
1,
total: 85999,
status: "Pending",

createdAt: new Date()

Insert Contact Messages

db.contacts.insertMany(|

{ name: "Alice", message: "Loved your website!", phone: "9876543210", createdAt:
new Date() 7},

{ name: "Bob", message: "Do you have discounts on laptops?", phone: "9123456789",
createdAt: new Date() },

{ name: "Carol", message: "I want to cancel my order.", phone: "9988776655",

createdAt: new Date() }
1)

6. Reading Data (Find Queries)

Find All Documents

db.products.find()

Pretty Print

db.products.find().pretty()

Filter by Field

db.products.find({ category: "Electronics" })

Using Comparison Operators

db.products.find({ price: { $gt: 1000 } }) // greater than 1000

db.products.find({ price: { $gte: 1000, $1lte: 50000 } })

Logical Operators

db.products.find({ $or: [{ category: "Electronics" }, { stock: { $1t: 50 } }]| })

Projection (Select Specific Fields)

db.products.find({}, { name: 1, price: 1, _id: @ })

Sorting and Limiting

db.products.find().sort({ price: -1 }).limit(2)

7. Updating Documents

Update One

db.products.updateOne(
name: "Wireless Mouse" },

$set: { price: 899 } }

Update Many

db.products.updateMany(

{ category: "Electronics" },
{ $inc: { stock: 10 } }

Using $push to Add to Arrays

db.products.updateOne(
{ name: "Wireless Mouse" },

{ $push: { tags: "new" } }

8. Deleting Documents

Delete One

db.contacts.deleteOne({ name: "Alice" })

Delete Many

db.orders.deleteMany({ status: "Delivered" })

9. Indexing and Performance

Create an Index

db.products.createIndex({ name: 1 })

View All Indexes

db.products.getIndexes()

Explain Query Performance

db.products.find({ price: { $gt: 5000 } }).explain("executionStats")

10. Aggregation Framework

Basic Example

Total revenue from all orders:

db.orders.aggregate(|
{ $group: { _id: null, totalRevenue: { $sum: "$total” } } }
1

Group by Status

db.orders.aggregate(|
{ $group: { _id: "$status", totalOrders: { $sum: 1 } } }
1)

Lookup (Join Orders with Products)

db.orders.aggregate([
{
$lookup: {
from: "products",
localField: "products.name",
foreignField: "name",

as: "productDetails"

11. MongoDB Atlas (Cloud)

Steps to Use Atlas

1. Go to https://cloud.mongodb.com

2. Create a free cluster (Serverless recommended)

3. Whitelist your IP and create a DB user

4. Follow the connection string instructions to connect via mongosh or your

application

12. Aggregation Pipeline

Aggregation pipelines in MongoDB are used to analyze and transform data. They

work in stages: each stage performs an operation, and the output of one stage

becomes the input of the next.

Create a sample collection

Let's start with a sales collection.

use ecommerce;

db.sales.insertMany([
{ _id: 1, item: "Apple", price:
{ _id: 2, item: "Banana", price:
{ _id: 3, item: "Carrot", price:

{ _id: 4, item: "Tomato", price:

quantity:
quantity:
quantity:

quantity:

5, category: "Fruit" },
10, category: "Fruit" 7},
6, category: "Vegetable" },

8, category: "Vegetable" },

https://cloud.mongodb.com

{ _id: 5, item: "Mango", price: 15, quantity: 3, category: "Fruit" }

This collection has 5 documents. Each document represents a product with its
price, quantity, and category.

What is an aggregation pipeline?
Think of it like a factory line:

« Each stage takes input (your data)
« Performs some operation (like filtering, sorting, grouping)

« Sends the result to the next stage

Example structure:

db.sales.aggregate([
{ /* stage 1 */ },
{ /* stage 2 */ },
{ /* stage 3 */ }
D;

Aggregation Pipeline Example 1: $match : Filter documents

Let's get only the sales where category is "Fruit" :

db.sales.aggregate([
{ $match: { category: "Fruit" } }
1);

Output:

{ _id: 1, item: "Apple", price: 10, quantity: 5, category: "Fruit" }
{ _id: 2, item: "Banana", price: 5, quantity: 10, category: "Fruit" }

{ _id: 5, item: "Mango", price: 15, quantity: 3, category: "Fruit" }

Aggregation Pipeline Example 2: $project : Select specific fields
Let's display only item and price, and hide _id:
db.sales.aggregate([

{ $project: { _id: @, item: 1, price: 1 } }
D;

Output:
{ item: "Apple", price: 10 }
{ item: "Banana", price: 5 }
{ item: "Carrot", price: 8 }
{ item: "Tomato", price: 6 }
{ item: "Mango", price: 15 }

Aggregation Pipeline Example 3: $group : Group and calculate
totals

Let’s calculate total sales (price x quantity) for each category:

db.sales.aggregate([
{
$group: {
_id: "$category"”,
totalSales: { $sum: { $multiply: ["$price"”, "$quantity"] } }

Output:

{ _id: "Fruit", totalSales: 145 }

{ _id: "Vegetable", totalSales: 96 }

How this works:

« $group groups all documents by category

* $sum adds up the result of price x quantity for each document

Aggregation Pipeline Example 4: $sort : Sort results

Sort the total sales in descending order:

db.sales.aggregate([
{
$group: {
_id: "$category"”,
totalSales: { $sum: { $multiply: ["$price"”, "$quantity"] } }
}
¥
{ $sort: { totalSales: -1 } }
1)

Output:

{ _id: "Fruit", totalSales: 145 }

{ _id: "Vegetable", totalSales: 96 }

Aggregation Pipeline Example 5: Combine $match + $group

Find total sales for only Fruits:

db.sales.aggregate([

{ $match: { category: "Fruit" } },

{

$group: {
_id: null,

totalFruitSales: { $sum: { $multiply: ["$price”, "$quantity"] } }

Output:

{ totalFruitSales: 145 }

Aggregation Pipeline Summary table

Stage

$match

$project

$group

$sort

$limit

Description

Filter documents

Show/hide fields or create new ones

Group data and calculate sums,

averages
Sort results

Limit number of results

Example Use

{ category:
"Fruit" }

item, price

total sales per
category

Sort by total sales

Top 3 items

The stages you've learned ($match, $project, $group, $sort, $limit) are just the

most common and beginner-friendly ones: often called the core stages.

But MongoDB actually supports dozens of stages (over 25).

13. MongoDB Indexes
Indexes in MongoDB are special data structures that improve the speed of read

operations on a collection. They work similarly to indexes in books, allowing the
database to quickly locate and access the data without scanning every document.

Create Index

db.products.createIndex({ name: 1 }) // Ascending index on 'name' field

View Indexes

db.products.getIndexes() // List all indexes on 'products' collection

Should you always create indexes?

While indexes improve read performance, they can slow down write operations
(inserts, updates, deletes) because the index must also be updated. Therefore, it's
essential to create indexes thoughtfully based on your application’s query patterns.

14. Useful Admin Commands

db.stats() // Show DB stats
db.serverStatus() // Server info
db.products.countDocuments() // Count documents

db.products.renameCollection("items") // Rename collection

db.products.drop() // Drop collection

