

MongoDB Handbook

1. Introduction

In this MongoDB handbook, we’ll cover everything you need to use MongoDB
confidently as fast as possible. We’ll use an e-commerce website as our primary
example with three main collections:

products : store products information

orders : store order details

contacts : messages from the contact form

You’ll learn all essential MongoDB operations using the latest MongoDB features.

2. MongoDB Basics

What is MongoDB?

MongoDB is a NoSQL document-oriented database. It stores data in JSON-like
documents (actually BSON, a binary form of JSON).

Key Components

mongod – the main MongoDB server daemon. It handles connections,

database storage, and queries. You must run this before using MongoDB
locally.

mongosh – the MongoDB Shell. It’s the command-line interface for

interacting with MongoDB. You use it to run commands, queries, and scripts.

MongoDB Compass – a GUI tool for visualizing data, running queries, and
analyzing performance. Perfect for beginners who prefer a graphical view.

•

•

•

•

•

•

3. Installing MongoDB

Installing MongoDB can be easily done by visiting the official website. The
community edition is free and suitable for most use cases.

4. Basic Mongo Shell Commands

5. Creating Collections and Inserting Data

We’ll create three collections:

products

orders

contacts

Insert Sample Products

Let’s populate our database using insertMany() .

show dbs // List all databases

use ecommerce // Create or switch to a database

show collections // List all collections in the current DB

db.dropDatabase() // Drop current database

•

•

•

use ecommerce

db.products.insertMany([

{

 name: "Wireless Mouse",

 price: 799,

 category: "Electronics",

Insert Orders

 stock: 120,

 ratings: 4.5,

 tags: ["computer", "accessory", "wireless"],

 createdAt: new Date()

},

{

 name: "Mechanical Keyboard",

 price: 2499,

 category: "Electronics",

 stock: 80,

 ratings: 4.8,

 tags: ["keyboard", "mechanical"],

 createdAt: new Date()

},

{

 name: "Gaming Laptop",

 price: 85999,

 category: "Computers",

 stock: 30,

 ratings: 4.6,

 tags: ["gaming", "laptop"],

 createdAt: new Date()

}

])

db.orders.insertMany([

{

 orderId: "ORD001",

 user: "John Doe",

 products: [

{ name: "Wireless Mouse", quantity: 1, price: 799 },

{ name: "Mechanical Keyboard", quantity: 1, price: 2499 }

],

 total: 3298,

 status: "Delivered",

 createdAt: new Date()

},

Insert Contact Messages

6. Reading Data (Find Queries)

Find All Documents

Pretty Print

{

 orderId: "ORD002",

 user: "Jane Smith",

 products: [

{ name: "Gaming Laptop", quantity: 1, price: 85999 }

],

 total: 85999,

 status: "Pending",

 createdAt: new Date()

}

])

db.contacts.insertMany([

{ name: "Alice", message: "Loved your website!", phone: "9876543210", createdAt:

new Date() },

{ name: "Bob", message: "Do you have discounts on laptops?", phone: "9123456789",

createdAt: new Date() },

{ name: "Carol", message: "I want to cancel my order.", phone: "9988776655",

createdAt: new Date() }

])

db.products.find()

db.products.find().pretty()

Filter by Field

Using Comparison Operators

Logical Operators

Projection (Select Specific Fields)

Sorting and Limiting

7. Updating Documents

Update One

db.products.find({ category: "Electronics" })

db.products.find({ price: { $gt: 1000 } }) // greater than 1000

db.products.find({ price: { $gte: 1000, $lte: 50000 } })

db.products.find({ $or: [{ category: "Electronics" }, { stock: { $lt: 50 } }] })

db.products.find({}, { name: 1, price: 1, _id: 0 })

db.products.find().sort({ price: -1 }).limit(2)

db.products.updateOne(

{ name: "Wireless Mouse" },

{ $set: { price: 899 } }

)

Update Many

Using $push to Add to Arrays

8. Deleting Documents

Delete One

Delete Many

9. Indexing and Performance

Create an Index

db.products.updateMany(

{ category: "Electronics" },

{ $inc: { stock: 10 } }

)

db.products.updateOne(

{ name: "Wireless Mouse" },

{ $push: { tags: "new" } }

)

db.contacts.deleteOne({ name: "Alice" })

db.orders.deleteMany({ status: "Delivered" })

db.products.createIndex({ name: 1 })

View All Indexes

Explain Query Performance

10. Aggregation Framework

Basic Example

Total revenue from all orders:

Group by Status

Lookup (Join Orders with Products)

db.products.getIndexes()

db.products.find({ price: { $gt: 5000 } }).explain("executionStats")

db.orders.aggregate([

{ $group: { _id: null, totalRevenue: { $sum: "$total" } } }

])

db.orders.aggregate([

{ $group: { _id: "$status", totalOrders: { $sum: 1 } } }

])

db.orders.aggregate([

{

 $lookup: {

from: "products",

 localField: "products.name",

 foreignField: "name",

as: "productDetails"

11. MongoDB Atlas (Cloud)

Steps to Use Atlas

Go to https://cloud.mongodb.com

Create a free cluster (Serverless recommended)

Whitelist your IP and create a DB user

Follow the connection string instructions to connect via mongosh or your

application

12. Aggregation Pipeline

Aggregation pipelines in MongoDB are used to analyze and transform data. They
work in stages: each stage performs an operation, and the output of one stage
becomes the input of the next.

Create a sample collection

Let’s start with a sales collection.

}

}

])

1.

2.

3.

4.

use ecommerce;

db.sales.insertMany([

{ _id: 1, item: "Apple", price: 10, quantity: 5, category: "Fruit" },

{ _id: 2, item: "Banana", price: 5, quantity: 10, category: "Fruit" },

{ _id: 3, item: "Carrot", price: 8, quantity: 6, category: "Vegetable" },

{ _id: 4, item: "Tomato", price: 6, quantity: 8, category: "Vegetable" },

https://cloud.mongodb.com

This collection has 5 documents. Each document represents a product with its
price, quantity, and category.

What is an aggregation pipeline?

Think of it like a factory line:

Each stage takes input (your data)

Performs some operation (like filtering, sorting, grouping)

Sends the result to the next stage

Example structure:

Aggregation Pipeline Example 1: $match : Filter documents

Let’s get only the sales where category is "Fruit" :

Output:

{ _id: 5, item: "Mango", price: 15, quantity: 3, category: "Fruit" }

]);

•

•

•

db.sales.aggregate([

{ /* stage 1 */ },

{ /* stage 2 */ },

{ /* stage 3 */ }

]);

db.sales.aggregate([

{ $match: { category: "Fruit" } }

]);

Aggregation Pipeline Example 2: $project : Select specific fields

Let’s display only item and price , and hide _id :

Output:

Aggregation Pipeline Example 3: $group : Group and calculate
totals

Let’s calculate total sales (price × quantity) for each category:

{ _id: 1, item: "Apple", price: 10, quantity: 5, category: "Fruit" }

{ _id: 2, item: "Banana", price: 5, quantity: 10, category: "Fruit" }

{ _id: 5, item: "Mango", price: 15, quantity: 3, category: "Fruit" }

db.sales.aggregate([

{ $project: { _id: 0, item: 1, price: 1 } }

]);

{ item: "Apple", price: 10 }

{ item: "Banana", price: 5 }

{ item: "Carrot", price: 8 }

{ item: "Tomato", price: 6 }

{ item: "Mango", price: 15 }

db.sales.aggregate([

{

 $group: {

 _id: "$category",

 totalSales: { $sum: { $multiply: ["$price", "$quantity"] } }

}

Output:

How this works:

$group groups all documents by category

$sum adds up the result of price × quantity for each document

Aggregation Pipeline Example 4: $sort : Sort results

Sort the total sales in descending order:

Output:

}

]);

{ _id: "Fruit", totalSales: 145 }

{ _id: "Vegetable", totalSales: 96 }

•

•

db.sales.aggregate([

{

 $group: {

 _id: "$category",

 totalSales: { $sum: { $multiply: ["$price", "$quantity"] } }

}

},

{ $sort: { totalSales: -1 } }

]);

{ _id: "Fruit", totalSales: 145 }

{ _id: "Vegetable", totalSales: 96 }

Aggregation Pipeline Example 5: Combine $match + $group

Find total sales for only Fruits:

Output:

Aggregation Pipeline Summary table

Stage Description Example Use

$match Filter documents
{ category:

"Fruit" }

$project Show/hide fields or create new ones item , price

$group
Group data and calculate sums,
averages

total sales per
category

$sort Sort results Sort by total sales

$limit Limit number of results Top 3 items

The stages you’ve learned ($match, $project, $group, $sort, $limit) are just the
most common and beginner-friendly ones: often called the core stages.

db.sales.aggregate([

{ $match: { category: "Fruit" } },

{

 $group: {

 _id: null,

 totalFruitSales: { $sum: { $multiply: ["$price", "$quantity"] } }

}

}

]);

{ totalFruitSales: 145 }

But MongoDB actually supports dozens of stages (over 25).

13. MongoDB Indexes

Indexes in MongoDB are special data structures that improve the speed of read
operations on a collection. They work similarly to indexes in books, allowing the
database to quickly locate and access the data without scanning every document.

Create Index

View Indexes

Should you always create indexes?

While indexes improve read performance, they can slow down write operations
(inserts, updates, deletes) because the index must also be updated. Therefore, it’s
essential to create indexes thoughtfully based on your application’s query patterns.

14. Useful Admin Commands

db.products.createIndex({ name: 1 }) // Ascending index on 'name' field

db.products.getIndexes() // List all indexes on 'products' collection

db.stats() // Show DB stats

db.serverStatus() // Server info

db.products.countDocuments() // Count documents

db.products.renameCollection("items") // Rename collection

db.products.drop() // Drop collection

