C

ULTIMATE
C HANDBOOK

By CodeWithHarry

4
Ny

Stamp

PREFACE

Welcome to the “Ultimate C Programming Handbook," your comprehensive guide to mastering
C programming. This handbook is designed for beginners and anyone looking to strengthen
their foundational knowledge of C, a versatile and user-friendly programming language.

PURPOSE AND AUDIENCE

This handbook aims to make programming accessible and enjoyable for everyone. Whether
you're a student new to coding, a professional seeking to enhance your skills, or an enthusiast
exploring C, this handbook will definitely be helpful. C’s simplicity and readability make it an
ideal starting point for anyone interested in programming.

STRUCTURE AND CONTENT

The handbook is divided into clear, concise chapters, each focused on a specific aspect of C:

e Fundamental Concepts: Start with the basics and write your first program.

e Practical Examples: Illustrative examples and sample code demonstrate the
application of concepts.

e Hands-On Exercises: End-of-chapter exercises reinforce learning and build confidence.

WHY C?

C is known for its efficiency and control, making it perfect for system-level programming. Itis a
low-level, compiled language that provides fine-grained control over hardware and memory,
supporting applications in operating systems, embedded systems, game development, and
high-performance computing. C's power and flexibility make it a valuable tool for both novice
and experienced programmers looking to understand how computers work at a deeper level.

ACKNOWLEDGEMENTS

| extend my gratitude to the educators, programmers, and contributors who have shared their
knowledge and insights, shaping the content of this handbook. Special thanks to all the
students watching my content on YouTube and C community for maintaining a supportive and
inspiring environment for learners worldwide.

CONCLUSION

Learning programming can be both exciting and challenging. The “Ultimate C Programming
Handbook" aims to make your journey smooth and rewarding. Watch my video along with
following this handbook for optimal learning. Let this guide be your stepping stone to success in
the world of programming.

TABLE OF CONTENTS

PREFACE ...ttt ettt ettt e ettt e e ettt e e e tta e e e e taa e e eetba e ettaa e eeaaa e eeanaa e eesnaseetsnaseaeananeeeanaeenees 1
O Tq o JoR1= T Ta o I ANS (o IT=1 (o] - N PP 1
1 gUlea (8] == o [o M @] o1 (=T o | S PRSP PSPPI 1
VY €2 ettt ettt ettt e e ettt e e ettt e e ettt e e ettt e e et tu e e e tta e e e tba e e taaa e e taa e e ttba e eetaa e e etaneeaeas 1
ACKNOWLEAZEIMENTS .ouiiiiiiiiiiiii et ie et et ettt ettt ee e et easeansasansanstnsensansansessnssnsensensensensnnn 1
[070] o Tod (U E7 10 o B PR SPPR PPN 1

C Programming Handbook BY COAEWITNNAITYcuuiiniiiii ittt e e e e 6
AU e = A TN oY doT={ =1 a 010 011 o V= o PP PTRRN 6
WWVNAT IS €7 ittt ettt ettt e ettt e e e et e e ettt e e e etaa e e etaua e e etbaa e eataa e eaaua e eesnaneeetsaneeaananeeeesnaneaneen 6
USES OF Gttt ettt et et et et et et et e a et et e et et e a st e e e a st eaaas 6

Chapter 1: Variables, Constants & KEYWOIASc..iuiiiiiiiiiiiii et et e et e e e e e e e s e eanees 7
VAEADLES e ettt et et et e bt s e e b e eaaas 7
Rules for naming variableS in Co..iuiiiiiiiii et e e et e aaae 7
(@0 E1 =] o1 £ PRSPPI 7
TYPES OF CONSTANTS 1eeiiiiiiiii ettt et e et et s e et s e e st s e s eansenesanss 7
KEBYWORAS ..ttt ettt et e e et et et e et e et e e et e et eaastaesaneeansenesanennsensennss 8
(OTUT {4 ol o] o T=1 7= o H U PPNt 8
BasiC STrUCTUIE OF @ C PrOZIramM .ouu ettt ettt e e e e st e e ean s e eanns 9
(67014 010 01T 01 £ ST PP PTPPPRPTPRN 9
(070 aa] oY F=Nd[eY e JF=Ta o =X GGTe1 UL 4 o] o NPt 9
] o] £=1 0V (U] g Lol 4] o 1= PPN 10
TYPES OF VAKADLES «cniiiiiiiiee et et e e e b st et e a st s e eanes 10
ReCEIVING INPUE FrOM The USEI . .. i e et e et e e e e e e e e s e e easneaneanaansaneens 10

(01011 o) (=1 g B o = Yol [T ST T PRt 1"

Chapter 2: INStrUCTIONS N OPEIATOIS ..ovuuiuuiiiiiiiiiiiiii ettt et e e ee e st et ea st eanseaesanennnes 12
1Y o L=t e] i1 011 4 {8 o1 4 o] o I TSP 12
1Y o LN LTed K= = LA o) g L 1S { £ U o o] o 1< TS PN 12
Arithmetic INSTIUCTIONS c...iiiiiiiiiii e e e e e 12
1Y e Lo N1 11 L=1 €51 o] o HT PR PP PPN 13
(O] o1=1 =) (o] gl o] €= Te1=To [=1 s [o1- T [I o S PRPRR 14
(O] o1=1¢=) o] g o] ¢=To1=To [=1 4 [o] - SN PP P PP PPNt 14
(O] o1=1 =) o] =TT Yo Lol F= | V71 YA PR 14
(070 o1 do 1N [o 1 { (T 4[] o - TP PPTPPPRPPPRPPRPOR 15

(01 0F=] o) (=1 @l S = Tod d[od - R = | SO PPNt 16

Chapter 3: Conditional INSTIUCTIONScuiiiiiiiiee et e et et e e e e st e e e e e e et eaaeneenarnasnaananns 17

Decision Making iINSTIUCTIONS IN Cuuuniuriiiiiiii e ee et et ee et ea et eneeneeneassaneansnsenssnsensanenns 17

(LTRSS Ry €= Y (=T 0 0= o | PPN 17
(070 [oN =) E=T 0 o] o] = PRSR 17
R B A ToT b=] Mo T o X=T £=) o] 3 1o I o SRR PPN 18
oY= loF=] Mol o1=T 2-) o] £ J NN PP PP PR PRPRPRNt 18
(UET:T-(-Ne) ll lo]={[ef-1We] o 1T ¢= | (o] £ H T TP PR PPNt 18
ELSE T CLAUSE L.iiiiiiiiiii e a e b e aaae 18
(O] o1=1 =] (o] gl o] €= To1=To [=1 [o] TN PR 19
(070 gTe [1dTeT aF=1Wo] o1=T 2=) o] - TSR 19
Switch case controliNStrUCTIONc..iiiiiiiiiiiiii e 20
Chapter 3 = PraCtiCe SEl....cuuiuiiiiiiiiiii ettt e e et e b ea st eaa st s e ennsas 21
Chapter 4: Loop CONTrOLINSTIUCTION ..iuuiiiiiiiiiiiiiiiiii ittt et e e et e e s e s e eanaes 22
LAY)Y (o o] o 1= S PP 22
Y oo (oo o I F PPN 22
(LT T LTS3 o To T o R PP UPPPTRN 22
INncrement and dECIrEMENT OPEIATOIS ..uuiiuiiiiiiiiiitiie ettt ee et e e ee e et eaeaeneenernernernsensensnssnsrnssnsansens 23
Lo LoV o T L= (o o] o RPN 23
L0 gl (o T o TR PPN 23
AN oF-1-1-No) o (Yol ¢=1 aaT=T aku] a V= o] gl UoYo o Hu PPN 24
The break StatemMENTiN € .oouuei ittt e e et e e e eaes 24
The continue StateMENTIN Cu..iuueiiiiiiiiiiiiiiii e e e 25
(010 F-] o) (=1 el o = Tl (o ST 1 RNt 26
Project 1: NUMDEr SUESSING SAIME ..ouiiuiiiiiiiiiiiieiieiie et et eteete et eetean et etaseeaaenesnetnsanseasensenssssnernesnesnsenns 27
Chapter 5—FUNCtions and RECUISIONiuiiniiniiiiiieiieiiee ettt et e et ee et et e e eaneeneanenenaensansensensans 28
What iS @ FUNCHIONT ceeeiiiiie ettt et et eea et s e e s e eaa e ena s eenes 28
S U] aTeXulo] ol o] o] {o] 1Y/ o 1= TSPt 28
0T Lo o T = 28
FUNCTION defiNITION ceueniiiiiii ittt et et e e et e e e eaes 29
] oJo] €= o}l o ToT [) £ TSN PRSP 29
TYPES OF FUNCHIONS ettt et et ettt ettt et e e e e eaneaseaaensansansansansansansnsansensensansansenees 29
N4V oAV ICE 8] g 1 o] o 1< TR PP PP PP 29
Passing values tO FUNCTION ... e ettt et e e et e e e e e e e e e e e enns 29
N[0 (= P 30
T U] €] o] o PP 31
[T gYoTel g -] a1 dl ale) =T HN T P PPN 32
(010F-] o) (=1 @S Tl o = Tod (o] - 11 | PR PRRPRPTPRPRt 33
(010 F=] o) (= S Rl ol oY1 5] {=1 £ S TPt 34

The “address Of” (&) OPEIATOF ..uuiuiiii ittt tete e e e eaeaeeaensansansansassassansnssnssnsensnnsenees 34

The ‘Value at address’ OPEIATOr (F) . uuiue i iieiieiiiie ettt et e et et et et eteetesnesnetnesstessasnasnesnesnasnssneen 34
[LoV o N [=To E=] foI= W o Yo 11 01 (=] o SRR 34
A Program t0 demMONSTrAtE POINTEIS ..uuiue ittt iiiiiiiiii et ettt et ensene e eanraneansasanssnsenesnsensenses 35
(O 1014 o 11 | < PRSRE 35
oI L= T o IF- l o Jo] |] {=] ST OTTPPRPN 35
TYPES OF FUNCTION CALL ..eniiniiiii it ee et e e eaeaeaenseneansaneansaneasansensensensansenees 36
(OF=] LN o1V AVZ=] LU 13PTSR 36
(OF= LN YA =1 1T =T g Lo TSR 36
(010 F-] o) (1 Rl o = Tel (o1 - 11 | PPNt 38
(02 = T oL (=T A AV 4)V T PPN 39
ACCESSING BLEIMENTS .. ciuiiiiiiiii ittt et et et st et eaa e ta et eaaeeastnsennstnesenennsas 39
INITIAlIZATION OF @N AITAY .euiniiii i et et et et ettt e ete e eaneaneanentnaaneenesnssnennsnsensensensensens 39
PN g &= 1R o T 1 =1 0 aTe] oY PPN 40
POINTEr @rthMETIC couuie ittt et et e e e st e e s e e eas 40
ACCESSING Array USING POINTEIS .uiuiniiiiiiiieiitiie ettt eteee e ee et e teae et eteeaaenetnatneansensensessnsensrnernesnsenees 41
Passing array tO fUNCTIONS ...uuiiniiiiiiiiiiiiie et et et e et e eeee e eaeansaneneneanaanssnsansensnsensensensensens 41
MULLIAIMENSIONAL AITAYS «.eiiiiiiiiiii ittt ettt et st et e b et san e ea s tneanseaaeens 41
A D14 =)V T 0 =T 0 0] o VPPN 41
(01011 o) (= QA o ¢ Lol (oo R 1= RNt 43
(010 F=T o) (=T g i A [oY= £ T TP PI PRIt 44
INIIALIZING STINES ivniiiiiieiiii ettt e et e e et et et et et e e et et eansananasnesnasnssnsenssnsnssnssnssnsensens 44
1 gl o T T W e g T=T 0 4 ToT Y/ IS RN 44
P INEING St NS ¢ttt ettt ettt et et et eaea e e s en e e saaeanaanenansansensanssnennensensensensensnns 44
Taking string iNPUL frOM the USEI c..inieii e e e e et et et e e e et e e e e e eaneanees 44
LY (I T Lo I o101 €1) IS 45
Declaring a StriNg USING POINTEIS ..ouuiuiiiiiiiiiii e ie ettt e et e e et et et eanenetneensensansenennsnsensensensensens 45
Standard library fUNCHIONS fOr STHNES cuuiuniiiiiiii e e e e e e e e e e e e e eaene st e eaaneanaanns 45
1 (=T o1 RPN 45
o] o) Y/ | T PP PP PR PRPRPRPIRt 46
S got- | | IR 46
S 4] 0] o] PR 46
(010 F=] o) (=1 el S = Ted d[od - R = | S P TPSPRPRPRPRRRt 47
(010 F=] o) (=1 g I A {1 (o1 (8 | €T S TP TPRPRPRPTPRPRt 48
AL AT T { (U o] AU T P 48
ATTAY OF STIUCTUIES 1uniiiiiiiiiiii i iie et ettt ee et et et ettt ene et ensansansanssnensansansansansesssssnsensensensensnnrenees 48
INIIALIZING STIUCTUIES ..t eiiiii ittt e et et e e et et et s e s e saneaneanenensansansanssnenssnsensensensnnenns 49

SETUCTUIES 1N TNIBIMIONY tatttiiiii ittt ettt ettt et et eaneaneaaaantusnssnaansessasssssnssnstnsensessasssssnssnsessensensnnenns 49

POINTEI 1O STFUCTUIES eutiiiiiiiiiiiii ittt et e bt et e b st saa s eae s tneanseneeens 49
Y (o) Vo] o 1=] -1 o] S PPN 49
Passing StruCture 10 @ fUNCTIONiuiiiiiii it ee et et e e et e et e e e e eaneaneansnsansansensnnsans 49
Y PEAET KEYWOIA ettt ettt e et et e e et et easeneaasnssesasnsnenesnsnenesnsnesssnsnesssnsnennes 50
(010 F=] o] (=T Il S = Tl (o1 - I1 = Rt 51
(010 F=] o) (=1 g L0 o U= PPNt 52
[N o Jo T[4 (=] G PPN 52
File 0peniNg MOAES IN € .eiiniiiiieii ittt ettt et e e et e e et e et eaueenanaeanneanassnsanneensanneens 52
1Y LT e] 1T TP 53
REAAING @ TIlE ceuiiiiiiiii i ettt et et et st e e s e e e e aaeeas 53
(64 o S] o= 4 a1 1 PPN 53
WIHEE 10 @ FIlE et ettt et e e e et e ea e eaaeeaes 53
L= CLCeT DIz 1 Lo I § 18 LT | PN 54
(=@ =T o T o i 11 (= T PP PPPIN 54
(01011 o) (=1 g L Rl o = Tod [ST 1 PRt 55
PrOJeCTt 2: SNAKE, Water, GUN . ..iiiiiiiiii it ee ettt ettt ee et et e e et eaaeenaaenetnsensansansensessnsenernsensensenns 56
Chapter 11— Dynamic Memory ALLOCATION ... c..iiuiiiiiiiii i e eaeaaes 57
CynNamic MEMOIY AllOCATION . .u.ieiiii ittt ee e e et ea et et et eneenetnsansenssnsenenssnsrnesnsensansens 57
FUNCTION FOr DMain Co.eeeeeiiiiiiiiii ettt et et et et et e ena s eena s eenaseenes 57
(e F=11Ce Yo § I 8] g Tox 4 o] s H U P PR PPP PR PRPRPRPIRt 57
foF=] LT Yo} I {815] 4 o] o TSN PRt 57
LLECET 0 L8 L Lo o o PPN 58
FEALLOC() FUNCTION Leeeeiiiii ettt et et ettt e et et e e e e eanaanenensensensanssnennannensensensensnns 58
(01011 o) =] g B Il o = Vol {1 S 11 - RNt 59

C PROGRAMMING HANDBOOK BY CODEWITHHARRY

WHAT IS PROGRAMMING?

Computer programming is a medium for us to communicate with computers. Just like
we use ‘Hindi’ or ‘English’ to communicate with each other, programming is a way for
us to deliver our instructions to the computer.

WHAT IS C?
Cis a programming language.
Cis one of the oldest and finest programming languages.

C was developed by Dennis Ritchie at AT&T’s Bell labs, USA in 1972.

USES OF C

C language is used to program a wide variety of systems. Some of the uses of C are as
follows:

1. Major parts of Windows, Linux and other operating systems are written in C.

2. Cis used to write driver programs for devices like tablets, printers etc.

3. Clanguage is used to program embedded systems where programs need to run
faster in limited memory (Microwave, Cameras etc.)

4. Cisusedtodevelop games, an area where latency is very important, i.e., the
computer must react quickly to user input.

INSTALLATION

We will use VS Code as our code editor to write our code and install MinGW gcc
compiler to compile our C program.

Compilation is the process of translating high-level source code written in programming
languages like C into machine code, which is the low-level code that a computer's CPU
can execute directly. Machine code consists of binary instructions specific to a
computer's architecture.

We can install VS Code and MinGW from their respective websites

Justinstall it like
a game!

CHAPTER 1: VARIABLES, CONSTANTS & KEYWORDS

VARIABLES

Avariable is a container which stores a ‘value’. In kitchen, we have containers storing
Rice, Dal, Sugar etc. Similar to that, variables in C stores value of a constant.

Example:

RULES FOR NAMING VARIABLES IN C

First character must be an alphabet or underscore (_)
No commas, blanks are allowed.

No special symbol other than (_) allowed.

Variable names are case sensitive.

PoOd =

We must create meaningful variable names in our programs. This enhances readability
of our programs.

CONSTANTS
An entity whose value does not change is called as a constant.

Avariable is an entity whose value can be changed.

TYPES OF CONSTANTS

Primarily, there are three types of constants:
1. Integer Constant > 1,6,7,9

2. Real Constant > 322.1,2.5,7.0

3. Character Constant > ‘a’, ‘$’, ‘@’ (must be enclosed within single quotes)

KEYWORDS

These are reserved words, whose meaning is already known to the compiler. There are
32 keywords available in C.

auto double int struct
break long else switch
case return enum typedef
char register extern union
const short float unsigned
continue signed for void
default sizeof goto volatile
do static if while

OUR FIRST C PROGRAM

#tinclude <stdio.h>

int main() {

printf("Hello, I am learning C with Harry");
return 0;

BASIC STRUCTURE OF A C PROGRAM

All C programs must follow a basic structure. A C program starts with a main function
and executes instructions present inside it.

Each instruction is terminated with a semicolon (;).
There are some rules which are applicable to all the C programs:

1. Every program’s execution starts from main() function.

2. Allthe statements are terminated with a semicolon.

3. Instructions are case-sensitive.

4. Instructions are executed in the same order in which they are written.

COMMENTS

Comments are used to clarify something about the program in plain language. Itis a
way for us to add notes to our program. There are two types of comments in C.

1. Single line Comment: Single-line comments start with two forward slashes (//).
Any information after the slashes // lying on the same line would be ignored (will
not be executed).

2. Multi-line Comment: A multi-line comment starts with /* and ends with */. Any
information between /* and */ will be ignored by the compiler.

Note: Comments in a C program are not executed and are ignored.

COMPILATION AND EXECUTION

first.c——|C Compiler] — first.exe [EX

— **gcc
inVSCode

A compileris a computer program which converts a C program into machine language
so that it can be easily understood by the computer.

A C program is written in plain text.

This plain text is combination of instructions in a particular sequence. The compiler
performs some basic checks and finally converts the program into an executable.

LIBRARY FUNCTIONS

C language has a lot of valuable library functions which is used to carry out certain
tasks. Forinstance printf() function is used to print values on the screen.

#include <stdio.h>
int main() {
int i = 10;
printf("This is %d\n", 1i);

TYPES OF VARIABLES

1. Integervariables > int a=3;
2. Realvariables » int a=7; floata=7.7;
3. Character variables » char a= ‘b’;

RECEIVING INPUT FROM THE USER
In order to take input from the user and assign it to a variable, we use scanf() function

Syntax:

scanf("%d", &i);

‘&’ is the “address of” operator and it means that the supplied value should be copied
to the address which is indicated by variable i.

10

CHAPTER 1- PRACTICE SET

1.

Write a C program to calculate area of a rectangle:

a. Using hard coded inputs.

b. Usinginputs supplied by the user.
Calculate the area of a circle and modify the same program to calculate the
volume of a cylinder given its radius and height.
Write a program to convert Celsius (Centigrade degrees temperature to
Fahrenheit).
Write a program to calculate simple interest for a set of values representing
principal, number of years and rate of interest.

(|

CHAPTER 2: INSTRUCTIONS AND OPERATORS

A C program is a set of instructions. Just like a recipe - which contains instructions to
prepare a particular dish.

TYPES OF INSTRUCTIONS

1. Type declaration Instructions.
2. Arithmetic Instructions
3. Control Instructions.

TYPE DECLARATION INSTRUCTIONS

This is how you declare a variable in C

OTHER VARIATIONS:

Some other variations of this declaration look like this:

int a, b, ¢, d;
a=b=c=4d= 30;

ARITHMETIC INSTRUCTIONS

Arithmetic instructions perform mathematical operations.

Here are some of the commonly used operators in C language:

12

« +(Addition)

e - (Subtraction) Operators
« *(Multiplication) l l
o /(Division)

X+y = <2
e 9% (Modulus)

Operands Result

1. Operands can be int/float etc. + - * / are arithmetic operators.

int b =2, c = 3;
int z; z = b*c;
int z; b*c = z;

2. % is the modular division operator
o % - returns the remainder
o % > cannot be applied on float
o % > sign is same as of numerator (-5%2=-1)
3. No operatoris assumed to pe present.
int i = ab
inti=a*hb
4. Thereis no operator to perform exponentiation in C however we can use pow
(x,y) from <math.h> (more later).

TYPE CONVERSION

An Arithmetic operation between

e intandint~int
e intand float > float
e floatand float » float

Example:

o 5/2becomes 2 as both the operands are int
o 5.0/2 becomes 2.5 as one of the operands is float
o 2/5becomes 0 as both the operands are int

NOTE:

In programming, type compatibility is crucial. Forint a = 3.5;,thefloat3.5is

demoted to 3, losing the fractional part because a is an integer. Conversely, for f1oat

a = 8;,theinteger 8is promoted to 8.0, matching the float type of a and retaining
precision.

Quick Quiz: intk =3.0/9; value of k? and why?

Ans: 3.0/9 =0.333. But since kis anint, it cannot store floats & value 0.33 is demoted to
0.

OPERATOR PRECEDENCE IN C

Have a look at the below statement:

3*x —8*y is (3x)-(8y) or 3(x-8y)?

In C language simple mathematical rules like BODMAS, no longer apply.

The answer to the above questions is provided by operator precedence & associativity.

OPERATOR PRECEDENCE

The following table lists the operator priority in C

Priority Operators
1st */ %
2 +-
3rd =

Operators of higher priority are evaluated first in the absence of parenthesis.

OPERATOR ASSOCIATIVITY

When operators of equal priority are present in an expression, the tie is taken care of by
associativity.

x*y/z > (x*y)/z
x/Iy*z > (x/y)*z
*, / follows left to right associativity

Pro Tip: Always use parenthesis in case of confusion

14

CONTROL INSTRUCTIONS
Determines the flow of controlin a program four types of control instructions in C are:

1. Sequence Controlinstructions.
2. Decision Control instructions
3. Loop Controlinstructions

4. Case Controlinstructions.

15

CHAPTER 2 - PRACTICE SET

1. Which of the following is invalid in C?

a. inta=1;intb =a;

b. intv=3*3;

c. chardt=‘21dec 2020’;
What data type will 3.0/8 — 2 return?
Write a program to check whether a number is divisible by 97 or not.
Explain step by step evaluation of 3*x/y — z+k, where x=2, y=3, z=3, k=1
3.0 + 1 will be:

a. Integer.

o owbd

b. Floating point number.
c. Character.

16

CHAPTER 3: CONDITIONAL INSTRUCTIONS

Sometimes we want to watch comedy videos on YouTube if the day is Sunday.
Sometimes we order junk food if it is our friend’s birthday in the hostel.

You might want to buy an umbrella if it’s raining, and you have the money.

You order the meal if dal or your favourite bhindi is listed on the menu.

All these are decisions which depends on a condition being met.

In C language too, we must be able to execute instructions on a condition(s) being met.

DECISION MAKING INSTRUCTIONS IN C

e if—else statement
e switch statement

IF-ELSE STATEMENT

The syntax of an if-else statement in C looks like:

if (condition_to_be checked) {

} else {

CODE EXAMPLE:
int a = 23;

if (a > 18)
{

printf("you can drive \n");

}

Note that else block is not necessary but optional.

17

RELATIONAL OPERATORS IN C

Relational operators are used to evaluate conditions (true or false) inside the if
statements.

Some examples of relational operators are:

L —_ - 1= b)] b b) b
] >_: >’ <’ <_, L

Important note: ‘=’ is used for assignment Equals Géregaejcfﬂ%n Not equal to

whereas ‘==’ js used for equality check.

The condition can be any valid expression. In C a non-zero value is considered to be
true.

LOGICAL OPERATORS

&&, || and !, are three logical operators in C. These are read as “AND”, “OR” and “NOT”

They are used to provide logic to our C programs.

USAGE OF LOGICAL OPERATORS:

1. && (AND) ~> is true when both the conditions are true

a. “1andO0” is evaluated as false.

b. “0and0” is evaluated as false.

c. “1and1” is evaluated as true.
2. || (OR) »> is true when at least one of the conditionsistrue. (1or0~>1)(1or1-~>1)
3. !'(NOT) » returns true if given false and false if given true

a. !(3==3) » evaluates to false

b. !(3>30) > evaluates to true.

As the number of conditions increases, the level of indentation increases. This reduces
readability. Logical operators come to rescue in such cases.

ELSE IF CLAUSE

Instead of using multiple if statements, we can also use else if along with it thus forming
an if-else if-else ladder.

18

CODE EXAMPLE

Atypical if - else if - else ladder look like this:

IMPORTANT NOTE

1.
2.
3.
4.

OPERATOR PRECEDENCE

Using if-else if -else reduces indents.

The last “else” is optional.

Also there can be any number of “else if”.
Last else is executed only if all conditions fail.

Priority Operator
13t !
2nd * 1, %
3 +, -
4t <>, <=, >=
5t ==, |=
6™ &&
7" I
gth =

CONDITIONAL OPERATORS

A shorthand “if — else” can be written using the conditional or ternary operators

condition ? expression-if-true : expression-if-false

19

SWITCH CASE CONTROL INSTRUCTION

switch-case is used when we have to make a choice between number of alternatives for
a given variable.

switch (integer expression)

{

The value of integer-expression is matched against c1, c2, c3... If it matches any of
these cases, that case along with all subsequent “case” and “default” statements are
executed.

Quick Quiz: Write a program to find grade of a student given his marks based on below:

90-100=>A
80-90=>B
70-80=>C
60-70=>D
50-60=>E
<60 =>F

Some Important Notes:

e We can use switch-case statements even by writing cases in any order of our
choice (not necessarily ascending).

e charvalues are allowed as they can be easily evaluated to an integer.

e A switch can occur within another but in practice this is rarely done.

20

CHAPTER 3 - PRACTICE SET

1.

What will be the output of this program

int a = 10;
if (a = 11)

printf("I am 11");
else
printf("I am not 11");

Write a program to determine whether a student has passed or failed. To pass, a
student requires a total of 40% and at least 33% in each subject. Assume there
are three subjects and take the marks as input from the user.

Calculate income tax paid by an employee to the government as per the slabs
mentioned below:

Income Slab Tax
2.5-5.0L 5%
5.0L-10.0L 20%
Above 10.0L 30%

Note that there is no tax below 2.5L. Take income amount as an input from the user.

4.

Write a program to find whether a year entered by the user is a leap year or not.
Take year as an input from the user.

Write a program to determine whether a character entered by the user is
lowercase or not.

Write a program to find greatest of four numbers entered by the user.

21

CHAPTER 4: LOOP CONTROL INSTRUCTION

WHY LOOPS

Sometimes we want our programs to execute few sets of instructions over and over
again. For example: Printing 1 to100, first 100 even numbers etc.

Hence loops make it easy for a programmer to tell computer that a given set of
instructions must be executed repeatedly.

TYPES OF LOOPS
Primarily there are three types of loops in C language:

1. while loop
2. do-while loop
3. forloop

We will look into these one by one:

WHILE LOOP

while (condition is true) {

Example:

int i = 0;
while (i<10) {

printf("the value of i is %d\n", i);

i++;

Note: If the condition never becomes false, the while loop keeps getting executed. Such
loop is known as an infinite loop.

Quick Quiz: Write a program to print natural numbers from 10 to 20 when initial loop
counter is initialized to 0.

The loop counter need not be int, it can be float as well.

22

INCREMENT AND DECREMENT OPERATORS
i++>iisincreased by 1

i-->iis decreased by 1

printf("--i = %d\n", --i);

printf("i-- = %d\n", i--);
e +++ operator does not exist.
e +=2is compound assignment which translatestoi=i+2
e Similar to += operator we have other operators like -=, *=, /=, %-=.

DO-WHILE LOOP

The syntax of do-while loop looks like this:

do {

} while (condition);

The do-while loop works very similar to while loop.

e ‘while’ checks the condition & then executes the code.
e ‘do-while’ executes the code & then checks the condition.

In simpler terms we can say:
do-while loop = while loop which executes at least once.

Quick Quiz: Write a program to print first ‘n’ natural number using do-while loop.

Input: 4

FOR LOOP

The syntax of a typical ‘for’ loop looks like this:

for (initialize; test; increment or decrement)

{

23

e |Initialize » Setting a loop counter to an initial value.
e Test~> Checking a condition.
e Increment > Updating the loop counter.

Example:

for (i=0; i<3; i++){
printf("%d\n", i);
printf("\n");

Quick Quiz: Write a program to print first ‘n’ natural numbers using for loop

A CASE OF DECREMENTING FOR LOOP

for (i=5; i ; i--)

printf("%d\n",1);

This for loop will keep on running until i become 0.

The loop runs in following steps:

. ‘i’isinitialized to 5.
. The condition “i” (0 or none) is tested.
. The code is executed.

. Condition ‘i’ is checked & code is executed if it’s not 0.

1

2

3

4. ‘i’is decremented.

5

6. Andsoonuntil ‘i’is non 0.

Quick Quiz: Write a program to print ‘n’ natural numbers in reverse order.

THE BREAK STATEMENT IN C

The ‘break’ statement is used to exit the loop irrespective of whether the condition is
true or false.

Whenever a “break” is encountered inside the loop, the controlis sent outside the loop
Let us see this with the help of an example:

24

for (i=0; i<1000; i++){
printf("%d\n",i);
if (i==5){

break;

OUTPUT

The output of the above program will be below (and not 0 to 100)

THE CONTINUE STATEMENT IN C
The ‘continue’ statement is used to immediately move to the next iteration of the loop.

The control is taken to the next iteration thus skipping everything below “continue”
inside the loop for that iteration.

Example:

#include <stdio.h>

int main() {
int skip = 5;
int i = 9;
while (i < 10) {
if (i == skip) {
i++;
continue;
¥
printf("%d\n", i);
i++;

}

return 0;

1. Sometimes, the name of the variable might not indicate the behaviour of the
program.

2. ‘break’ statement completely exits the loop.

1. ‘continue’ statement skips the particular iteration of the loop.

25

CHAPTER 4 - PRACTICE SET

1. Write a program to print multiplication table of a given number n.
2. Write a program to print multiplication table of 10 in reversed order.
3. Adowhile loop is executed:
a. Atleastonce.
b. Atleasttwice.
c. Atmostonce.
4. What can be done using one type of loop can also be done using the other two
types of loops - true or false?
5. Write a program to sum first ten natural numbers using while loop.
6. Write a program to implement program 5 using ‘for’ and ‘do-while’ loop.
7. Write a program to calculate the sum of the numbers occurring in the
multiplication table of 8. (consider 8 x 1 to 8 x 10).
8. Write a program to calculate the factorial of a given number using a for loop.
9. Repeat 8 using while loop.
10. Write a program to check whether a given number is prime or not using loops.
11. Implement 10 using other types of loops.

26

PROJECT 1: NUMBER GUESSING GAME

We will write a program that generates a random number and asks the player to guess
it. If the player’s guess is higher than the actual number, the program displays “Lower
number please”. Similarly, if the user’s guess is too low, the program prints “Higher
number please”.

When the user guesses the correct number, the program displays the number of
guesses the player used to arrive at the number.

Hint: Use loop & use a random number generator.

27

CHAPTER 5 - FUNCTIONS AND RECURSION

Sometimes our program gets bigger in size and it's not possible for a programmer to
track which piece of code is doing what.

Function is a way to break our code into chunks so that it is possible for a programmer
to reuse them.

WHAT IS A FUNCTION?
A function is a block of code which performs a particular task.
A function can be reused by the programmer in a given program any number of times.

Syntax:

#tinclude <stdio.h>

void display();

int main() {
int a;
display();
return 0;

void display() {
printf("hi i am display\n");

FUNCTION PROTOTYPE

A function prototype informs the compiler about a function that will be defined later in
the program.

The void keyword indicates that the function does not return any value.

FUNCTION CALL

A function call instructs the compiler to execute the function's body when the call is
made.

Note that program execution starts from the main function and follows the sequence of
instructions written.

28

FUNCTION DEFINITION
This part contains the exact set of instructions executed during the function call.

When a function is called from main(), the main function pauses and temporarily
suspends. During this time, control transfers to the called function. Once the function
finishes executing, main() resumes.

Quick Quiz: Write a program with three functions

1. Good morning function which prints “good morning”.
2. Good afternoon function which prints “good afternoon”.
3. Good night function which prints “good night”.

main() should call all of these in order 1>2>3

IMPORTANT POINTS

e Execution of a C program starts from main().
e AC program can have more than one function.
e Everyfunction gets called directly or indirectly from main().

TYPES OF FUNCTIONS
There are two functions in C. Let's talk about them.

1. Library functions » Commonly required functions grouped togetherin a library
file on disk.

2. Userdefined function > These are the functions declared and defined by the
user.

WHY USE FUNCTIONS

1. To avoid rewriting the same logic again and again.
2. To keep track of what we are doingin a program
3. Totestand checklogic independently.

PASSING VALUES TO FUNCTION
We can pass values to a function and can get a value in return from a function.

Have a look at the code snippet below:

int sum (int a, int b)

29

A function prototype in programming is a declaration of a function that specifies its
name, return type, and parameters (if any) but does not include the function body.

The above prototype means that sum is a function which takes values ‘a’ (of type int)
and ‘b’ (of type int) and returns a value of type int.

Function definition of sum can be:

int sum (int a, int b) {

int c;
= a+b;

return c;

int d = sum (2,3);

NOTE:

1. Parameters are the values or variable placeholders in the function definition.
Example a & b.

2. Arguments are the actual values passed to the function to make a call. Example
2 &3.

3. Afunction canreturn only one value at a time.

4. Ifthe passed variable is changed inside the function, the function call doesn’t
change the value in the calling function.

int change(int a) {
= 77;
return 0;

‘change’ is a function which pretends to change ‘a’ to 77. Now if we call it from main
like this

int b=22;
change(b);

printf("b is %d", b);

This happens because a copy of ‘b’ is passed to the change function

30

Quick Quiz: Use the library function to calculate the area of a square with side a.

A

(Area? |

RECURSION

A function defined in C can callitself. This is called recursion. A function calling itself is
also called ‘recursive’ function.

Example:

A very good example of recursion is factorial.
Factorial(n)=1x2x3...xn

Factorial(n) =1x2x3...(n-1)xn
Factorial(n) = Factorial (n-1) xn

Since we can write factorial of a number in terms of itself, we can program it using
recursion.

int factorial(int x) {
int f;
if (x ==0 || x ==1) {
return 1;
} else {

f = x * factorial(x - 1);

return f;

31

DRY RUN OF RECURSIVE FACTORIAL PROGRAM

Factorial (5)
5 x Factorial(4)

5 x 4 x Factorial(3)

5 x 4 x 3 x Factorial(2)

/

5x 4 x 3 x2x Factorial(1)

5x4x3x2x]

IMPORTANT NOTES:

1.

Recursion is often a direct way to implement certain algorithms, but not
always the most direct for every algorithm. Recursion is particularly suited for
problems that can be divided into smaller, similar subproblems (like factorial
computation or tree traversal), but for some algorithms, iterative approaches
might be more straightforward or efficient.

The condition in a recursive function that stops further recursion is called
the base case. This correction clarifies that the base case is crucial as it
prevents infinite recursion and ensures the function terminates correctly.
Sometimes, due to an oversight by the programmer, a recursive function can
continue to run indefinitely without reaching a base case, potentially
causing a stack overflow or memory error. This statement highlights the risk of
infinite recursion and its consequences, emphasizing the importance of properly
defining base cases in recursive functions.

32

CHAPTER 5 - PRACTICE SET

1. Write a program using function to find average of three numbers.

2. Write a function to convert Celsius temperature into Fahrenheit.

3. Write a function to calculate force of attraction on a body of mass ‘m’ exerted by
earth. Consider g =9.8m/s?.

4. Write a program using recursion to calculate n'" element of Fibonacci series.

5. What will the following line produce in a C program:
int a = 4;
printf("%d %d %d \n", a, ++a, a++);

6. Write a recursive function to calculate the sum of first ‘n’ natural numbers.

7. Write a program using function to print the following pattern (first n lines)

*

* k k k%

33

CHAPTER 6- POINTERS

A pointer is a variable which stores the address of another variable.

—-—
T

address—— 87994 address—— 87998

THE “ADDRESS OF” (&) OPERATOR
The address of operator is used to obtain the address of a given variable.
If you refer to the diagrams above,

&i~> 87994

&j > 87998

Format specifier for printing pointer address is ‘%p’.

THE ‘VALUE AT ADDRESS’ OPERATOR (*)

The value at address or * operator is used to obtain the value present at a given memory
address. Itis denoted by *.

*(&i) =72
*(&j) = 87994
HOW TO DECLARE A POINTER?
A pointer is declared using the following syntax.

e int*j=>declare avariable j of type int-pointer
e j=&i=>store address ofiinj.

Just like pointer of type integer, we also have pointers to char, float etc.

34

int *in_ptr;

char *ch _ptr;
float *fl ptr;

Although it’s a good practice to use meaningful variable names, we should be very

careful while reading and working on programs from fellow programmers.

A PROGRAM TO DEMONSTRATE POINTERS

#include <stdio.h>

int main (){
int i = 8;
int *j;
J = &i;
printf("add i= %u\n",&i);
printf("add i= %u\n",j);
printf("add j= %u\n",&j);
printf("value i= %d\n",i);
printf("value i= %d\n",*(&1));
printf("value i= %d\n",*j);
return 0;

OUTPUT:

add i= 87994
add i= 87994
add j= 87998
value i= 8

value i= 8

value i= 8

This program sums it all. If you understand it, you have got the idea of pointers.

POINTER TO A POINTER

Just like ‘j’ is pointing to ‘i’ or storing the address of ‘i’, we can have another variable k
which can further store the address of ‘j’. What will be the type of ‘k’?

int **k;
k = &3;

35

k

1]
L~ 1

72 87994 87998

87994 87998 88004
int int* int**

We can even go further one level and create a variable ‘I’ of type int*** to store the
address of ‘k’. We mostly use int* and int** sometimes in real world programs.

TYPES OF FUNCTION CALL
Based on the way we pass arguments to the function, function calls are of two types.

1. Call by value » Sending the values of arguments.
2. Call by reference » Sending the address of arguments.

CALL BY VALUE

Here the values of the arguments are passed to the function. Consider this example:

int ¢ = sum (3,4);

If sum is defined as sum (int a, int b), the values 3 and 4 are copied to a and b. Now even
if we change a and b, nothing happens to the variables x and y.

This is call by value.

In C we usually make a call by value.

CALL BY REFERENCE

Here the address of the variables is passed to the function as arguments.

Now since the addresses are passed to the function, the function can now modify the
value of a variable in calling function using * and & operators.

36

EXAMPLE

This function is capable of swapping the values passed toit. Ifa=3 and b =4 before a
callto swap(a, b), then a=4 and b = 3 after calling swap.

main(){
a = 3;
b = 4;

swap(&a, &b);
return 0;

37

CHAPTER 6 — PRACTICE SET

1. Write a program to print the address of a variable. Use this address to get the
value of the variable.

2. Write a program having a variable ‘i’. Print the address of ‘i’. Pass this variable to
a function and print its address. Are these addresses same? Why?

3. Write a program to change the value of a variable to ten times of its current
value.

4. Write a function and pass the value by reference.

5. Write a program using a function which calculates the sum and average of two
numbers. Use pointers and print the values of sum and average in main().

6. Write a program to print the value of a variable i by using “pointer to pointer” type
of variable.

7. Try problem 3 using call by value and verify that it does not change the value of
the said variable.

38

CHAPTER 7 — ARRAYS

An array is a collection of similar elements. Array allows a single variable to store
multiple values.

SYNTAX:

int marks[90];

char name[20];
float percentile[90];

The values can now be assigned to make array like this:

marks[@0] = 33;

marks[1] = 12;
Note: It is very important to note that the array index starts with 0.

39113 888
2345 88 89

Total = 90 elements

ACCESSING ELEMENTS

Elements of an array can be accessed using:

scanf("%d", &marks[0]);

printf("%d", marks[0]);
Quick Quiz: Write a program to accept marks of five students in an array and print them
on the screen.

INITIALIZATION OF AN ARRAY

There are many other ways in which an array can be initialized.

int cgpal3]

= {9, 8, 8};
float marks[] =

{33, 40};

39

ARRAYS IN MEMORY
Consider this array:

int arr[3] = {1, 2, 3}

This will reserve 4 x 3 =12 bytes in memory (4 bytes for each integer).

A T213]— erinmemen

62302 62306 62310

POINTER ARITHMETIC
A pointer can be incremented to point to the next memory location of that type.

Consider this example:

char a =
char *b = &a;
b++;

float 1 = 1.7;
float *a = &i;
a++;

Following operations can be performed on a pointer:

Addition of a number to a pointer.
Subtraction of a number from a pointer.
Subtraction of one pointer from another.

PoObd-

Comparison of two pointer variables.

Quick Quiz: Try these operations on another variable by creating pointers in a separate
program. Demonstrate all the four operations.

40

ACCESSING ARRAY USING POINTERS
Consider this array:

719 2|8
index 0 1 2 3

T

ptr
If ptr points to index 0, ptr++ will point to index 1 & so on...

This way we can have an integer pointer pointing to first element of the array like this:

int *ptr = &arr[0];

ptr++;
*ptr

PASSING ARRAY TO FUNCTIONS

Array can be passed to the functions like this:

printArray(arr, n);
void printArray(int *i, int n);

void printArray(int i[], int n);
MULTIDIMENSIONAL ARRAYS

An array can be of 2 dimension/ 3 dimension/ n dimensions.
A 2 dimensions array can be defined like this:

int arr[3][2] = {{1, 4}

17, 9}
{11, 22}};

We can access the elements of this array as arr[0][0], arr[0][1] & so on ...

2-D ARRAYS IN MEMORY

A 2d array like a 1d array is stored in contiguous memory blocks like this:

41

arr[0][0] arr[0][1]..

1]4]7]9|nj22

87224 87228 ..

Quick Quiz: Create a 2-d array by taking input from the user. Write a display function to
print the content of this 2-d array on the screen.

42

CHAPTER 7 - PRACTICE SET

1. Create an array of 10 numbers. Verify using pointer arithmetic that (ptr+2) points
to the third element where ptris a pointer pointing to the first element of the

array.

2. IfS[3]is a 1-D array of integers then *(S+3) refers to the third element:
(i) True.
(i) False.

(iii) Depends.

3. Write a program to create an array of 10 integers and store multiplication table of
5init.

4. Repeat problem 3 for a general input provided by the user using scanf.

5. Write a program containing a function which reverses the array passed to it.

6. Write a program containing functions which counts the number of positive
integers in an array.

7. Create an array of size 3 x 10 containing multiplication tables of the numbers 2,7
and 9 respectively.

8. Repeat problem 7 for a custom input given by the user.

9. Create athree-dimensional array and print the address of its elements in
increasing order.

43

CHAPTER 8 - STRINGS

A string is a 1-D character array terminated by a null character (\0’)

A null character is used to denote the termination of a string. Characters are stored in
contiguous memory locations.

INITIALIZING STRINGS

Since string is an array of characters, it can be initialized as follows:

There is another shortcut for initializing string in C language:

char s[] = "HARRY",

STRINGS IN MEMORY

A string is stored just like an array in the memory as shown below.

r NULL CHARCTER

H{A[R[R|Y]\O
.

82210 82211 82212 82213 82214 82215
contiguous blocks in memory

Quick Quiz: Create a string using double quotes and print its content using a loop.

PRINTING STRINGS
A string can be printed character by character using printf and %c.
But there is another convenient way to print strings in C.

char st[] = "HARRY";

printf("%s", st);

TAKING STRING INPUT FROM THE USER

We can use %s with scanf to take string input from the user:

char st[50];
scanf ("%s", st);

44

scanf automatically adds a null character when the enter key is pressed.
Note:

1. The string should be short enough to fitinto the array.
2. scanf cannot be used to input multi-word strings with spaces.

GETS() AND PUTS()

gets() is a function which can be used to receive a multi-word string.

char st[30];
gets(st);

multiple gets() calls will be needed for multiple strings.

Likewise, puts can be used to output a string.

puts(st);
DECLARING A STRING USING POINTERS

We can declare strings using pointers.

char *ptr = "harry";
This tells the compiler to store the string in memory and assigned address is stored in a
char pointer.

Note:

1. Once a string is defined using char st [] = “harry”, it cannot be reinitialized to
something else.

2. Astring defined using pointers can be reinitialized.
ptr = "Rohan";

STANDARD LIBRARY FUNCTIONS FOR STRINGS
C provides a set of standard library functions for string manipulation.

Some of the most commonly used string functions are:

STRLEN()

This function is used to count the number of characters in the string excluding the null
(\Q’) characters.

int length = strlen(st);

These functions are declared under <string.h> header file.

45

STRCPY()

This function is used to copy the content of second string into first string passed to it.

char source[] = "harry";
char target[30];

strcpy (target,source);

target string should have enough capacity to store the source string.

STRCAT()

This function is used to concatenate two strings.

char s1[12] = "hello";
char s2[] = "harry";
strcat(sl,s2);

STRCMP()

This function is used to compare two strings. It returns 0 if the strings are equal, a
negative value if the first string's mismatching character's ASCIl value is less than the
second string's corresponding mismatching character, and a positive value otherwise.

strcmp("far", "joke"); cive valu

strcmp("joke", "far"); ositive va

46

CHAPTER 8 - PRACTICE SET

1. Which of the following is used to appropriately read a multi-word string.

1. gets()
2. puts()
3. printf()
4. scanf()

2. Write a program to take string as an input from the user using %c and %s confirm
that the strings are equal.

3. Write your own version of strlen function from <string.h>

4. Write afunction slice() to slice a string. It should change the original string such
thatitis now the sliced string. Take ‘m’ and ‘n’ as the start and ending position
for slice.

5. Write your own version of strcpy function from <string.h>

6. Write a program to encrypt a string by adding 1 to the ascii value of its
characters.

7. Write a program to decrypt the string encrypted using encrypt function in
problem 6.

8. Write a program to count the occurrence of a given character in a string.

9. Write a program to check whether a given character is present in a string or not.

47

CHAPTER 9 - STRUCTURES

Array and strings > Similar data (int, float, char).
Structures can hold > Dissimilar data.

A C structure can be created as follows:

struct employee

{

int code;
float salary;
char name[10];

};

We can use this user defined data type as follows:

struct employee el;
strcpy(el.name, "harry");

el.code = 100;
el.salary = 71.22;

So, a structure in Cis a collection of variables of different types under a single name.

Quick Quiz: Write a program to store the details of 3 employees from user defined data.
Use the structure declared above.

WHY USE STRUCTURES?

We can create the data types in the employee structure separately but when the
number of properties in a structure increases, it becomes difficult for us to create data
variables without structures. In a nutshell:

a. Structures keep the data organized.
b. Structures make data management easy for the programmer.

ARRAY OF STRUCTURES

Just like an array of integers, an array of floats and an array of characters, we can create
an array of structures.

struct employee facebook[100];

facebook[0].code = 100;
facebook[1].code = 101;

48

INITIALIZING STRUCTURES

Structures can also be initialized as follows:

struct employee harry = {100, 71.22, "harry"};

struct employee shubh = {0};
STRUCTURES IN MEMORY

Structures are stored in contiguous memory locations. For the structure ‘e1’ of type
struct employee, memory layout looks like this:

Address — . 78810 78814 78818

In an array of structures, these employee instances are stored adjacent to each other.

POINTER TO STRUCTURES

A pointer to structures can be created as follows:

struct employee *ptr;
ptr = ⪙

printf("%d", (*ptr).code);
ARROW OPERATOR

Instead of writing (*ptr).code, we can use arrow operator to access structure properties
as follows:

(*ptr).code

ptr->code

PASSING STRUCTURE TO A FUNCTION

A structure can be passed to a function just like any other data type.

void show(struct employee e);

49

Quick Quiz: Complete this show function to display the content of employee.

TYPEDEF KEYWORD
We can use the ‘typedef’ keyword to create an alias name for data typesin C.

‘typedef’ is more commonly used with structures.

struct Complex

{

float real;
float img;

6

typedef struct Complex
{
float real;
float img;
} ComplexNo;

EXAMPLE USAGE

Using the typedef alias, you can declare complex number variables more succinctly:

ComplexNo cl, c2;

50

CHAPTER 9 - PRACTICE SET

1. Create a two-dimensional vector using structures in C.

2. Write a function ‘sumVector’ which returns the sum of two vectors passed to it.
The vectors must be two-dimensional.

3. Twenty integers are to be stored in memory. What will you prefer- Array or
structure?

4. Write a program to illustrate the use of arrow operator > in C.

o

Write a program with a structure representing a complex number.

6. Create an array of 5 complex numbers created in Problem 5 and display them
with the help of a display function. The values must be taken as an input from
the user.

7. Write problem 5’s structure using ‘typedef’ keywords.

8. Create a structure representing a bank account of a customer. What fields did
you use and why?

9. Write a structure capable of storing date. Write a function to compare those
dates.

10. Solve problem 9 for time using ‘typedef’ keyword.

51

CHAPTER 10 - FILE I/O

The random-access memory is volatile, and its content is lost once the program
terminates. In order to persist the data forever we use files.

Afile is data stored in a storage device.

A C program can talk to the file by reading content from it and writing content to it.

VVﬁu;>
C Program FILE
<€

Read

Programmer

FILE POINTER
A “FILE” is a structure which needs to be created for opening the file.

A file pointer is a pointer to this structure of the file.
(FILE pointer is needed for communication between the file and the program).

A FILE pointer can be created as follows:

FILE *ptr;
ptr = fopen("filename.ext"; "mode");

FILE OPENING MODES IN C

C offers the programmers to select a mode for opening a file.
Following modes are primarily used in C File I/0.

open for reading
open for reading in binary
open for writing

open for writing in binary
open for append

52

TYPES OF FILES
Primarily, there are two types of files:

1. Textfiles (.txt, .c)
2. Binaryfiles (.jpg, .dat)

READING A FILE

A file can be opened for reading as follows:

FILE *ptr;
ptr = fopen("harry.txt", "r");

int num;

Let us assume that "harry.txt" contains an integer we can read that integer using:

fscanf(ptr, "%d", &num);

This will read an integer from file in Num variables.

Quick Quiz: Modify the program above to check whether the file exists or not before
opening the file.

CLOSING THE FILE

Itis very important to close the file after read or write. This is achieved using fclose as
follows:

fclose(ptr);

This will tell the compiler that we are done working with this file and the associated
resources could be freed.

WRITE TO A FILE
We can write to a file in a very similar manner like we read the file

FILE *fptr;

fptr = fopen("harry.txt", "w");

int num = 432;
fprintf(fptr, "%d", num);
fclose(fptr);

53

FGETC() AND FPUTC()

fgetc and fputc are used to read and write a character from/ to afile.

fgetc(ptr);
fputc('c', ptr);
EOF : END OF FILE

fgetc returns EOF when all the characters from a file have been read. So, we can write a
check like below to detect end of file:

while(1)

{
ch = fgetc(ptr);

if (ch == EOF)

{

break;

54

CHAPTER 10 - PRACTICE SET

1. Write a program to read three integers from a file.
2. Write a program to generate multiplication table of a given number in text
format. Make sure that the file is readable and well formatted.
3. Write a program to read a text file character by character and write its content
twice in separate file.
4. Take name and salary of two employees as input from the user and write them to
a text file in the following format:
i. Name1, 3300
ii. Name2, 7700
5. Write a program to modify a file containing an integer to double its value.

55

PROJECT 2: SNAKE, WATER, GUN

Snake, water, gun or rock, paper, scissors is a game most of us have played during
school time. (I sometimes play it even now).

Write a C program capable of playing this game with you.

Your program should be able to print the result after you choose snake/water or gun.

56

CHAPTER 11 - DYNAMIC MEMORY ALLOCATION

C is alanguage with some fixed rules of programming. For example: Changing the size
of an array is not allowed.

DYNAMIC MEMORY ALLOCATION

Dynamic memory allocation is a way to allocate memory to a data structure during the
runtime. We can use DMA function available in C to allocate and free memory during
runtime.

FUNCTION FOR DMAIN C
Following function are available in C to perform dynamic memory allocation:

1. malloc()
2. calloc()
3. free()

4. realloc()

MALLOC() FUNCTION

malloc stands for memory allocation. It takes humber of bytes to be allocated as an
input and returns a pointer of type void.

Syntax:

ptr = (int*)malloc(30* sizeof (int))

The expression returns a null pointer if the memory cannot be allocated.

Quick Quiz: Write a program to create a dynamic array of 5 floats using malloc().

CALLOC() FUNCTION

calloc stands for continuous allocation. Itinitializes each memory block with a default
value of 0.

Syntax:

ptr = (float*)calloc(30, sizeof (float));

It the space is not sufficient, memory allocation fails, and a NULL pointer is returned.

Quick Quiz: Write a program to create an array of size n using calloc where nis an
integer entered by the user.

57

FREE() FUNCTION

We can use free() function to deallocate the memory. The memory allocated using
calloc/malloc is not deallocated automatically.

Syntax:

free(ptr);

Quick Quiz: Write a program to demonstrate the usage of free() with malloc().

REALLOC() FUNCTION

Sometimes the dynamically allocated memory is insufficient or more than required.
realloc is used to allocate memory of new size using the previous pointer and size.

Syntax:

ptr = realloc (ptr, newsize);
ptr = realloc (ptr, 3*sizeof(int));

58

CHAPTER 11 - PRACTICE SET

1. Write a program to dynamically create an array of size 6 capable of storing 6
integers.

2. Usethe arrayin problem 1 to store 6 integers entered by the user.

3. Solve problem 1 using calloc().

4. Create an array dynamically capable of storing 5 integers. Now use realloc so
that it can now store 10 integers.

5. Create an array of multiplication table of 7 upto 10 (7 x 10 = 70). Use realloc to
make it store 15 number (from 7 x1to 7 x 15).

6. Attempt problem 4 using calloc().

59

